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Base equation

U

tt

−△U + µU − U

p = 0, U = U(x , t), x ∈ R

n. (1)

µ = 0 NLW

µ = 1 NLKG



Saling

Used by enginieers by building small-sale mokups that

resemble oryignal-sale model.

Dimension analysis of nulear explosion by G.I. Taylor.

Supernova blast.
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Symmetries

Equation symmetry

Uλ(t, r) = λα
U

(
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λ
,
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λ

)

, α =
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p − 1

.

Energy funtional

E [U] =

∫
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n
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+
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U
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n
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sales as

E [Uλ] = λβ
E [U],

where β = (n−2)p−(n+2)
p−1

.

Saling is:

ritial for β = 0, i.e. p = p

Q

= n+2
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subritial p < p
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Self-similar solutions

De�nition

U(t, r) = (T − t)−α
u(ρ), ρ =

r

T − t

(2)

Equation for self-similar pro�les

(1− ρ2)u′′ +

(

n − 1

ρ
−

2(p + 1)

p − 1

ρ

)

u

′ −
2(p + 1)

(p − 1)2
u + u

p = 0 (3)
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Self-similar solutions

Solution around ρ = 0 are simple Taylor series.

Solutions around ρ = 1 are:

simple Taylor series for k = (n−1)p−n−3

2(p−1) - noninteger;

ompliated when k - integer (resonane ondition);

These solutions an be mathed - we get global solution on

ρ ∈ [0; 1].Countable family of self-similar pro�les.

There is simple numerial method to onstrut these solutions.
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Self-similar solutions

Movable singularities for loal solutions at ρ = 0 are onneted

with singularities of Lane-Emden equation.

Global solution vanish when ρ → ∞.
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PDEs

How similar the evolution of (NLW)

U

tt

− U

rr

−
n − 1

r

U

r

− U

p = 0 (4)

is to the evolution of (NLKG)

U

tt

− U

rr

−
n − 1

r

U

r

+ U − U

p = 0. (5)

Conjeture

Blowup asyptotis of (4) is struturally stable under the

perturbation resultin in adding the mass term.



ODE blowup

Time independent solution for NLW:

U

0

(t) =
b

0

(T − t)α
, b

0

=

(

2(p + 1)

(p − 1)2

)
1

p−1

is stable and is the attrator for the solutions that blows up in �nite

time. It is true for arbitrary spatial dimension.
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Intermediate attrators



Intermediate attrators - no hair theorems BH



Superritial ases

l -th self-similar solution has l unstable modes.

First solution is intermediate attrator (even for speial k

ases):

U(t, r) =
u

1

(ρ)

(T − t)α
+ C

ξ
1

(ρ)

(T − t)λ1+α
+ damped modes,

For NLKG intermediate asymptotis �onverges� to the �rst

self-similar solution of NLW.
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Critial ases

There exist only one self-similar solution (apart from the trivial

one).

Stati solution plays speial role (it is unstable - one mode):

Q(r) =
1

(1+ br

2)α
, b =

p − 1

4n

, Qλ(r) =
1

λα
Q(r/λ). (6)

Possible behaviours:

Type I blowup - generi one.

Type II blowup - (6) z lim

t→T

λ(t) → 0.

Solution onverges to stati solution.

�Dispersion�
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Critial ases

Numerial simulations with initial onditions:

U(t = 0, r) = Ar

2

e

−

(

r−x

0

s

)

4

, U

t

(t = 0, r) = 0;

A and x

0

are parameters, s �xed.



NLKG - n = 3, p = 3

U

tt

− U

rr

−
2

r

U

r

+ U − U

3 = 0,

Stati solution is unstable attrator

S

rr

+
2

r

S

r

− S + S

3 = 0

with S(0) = 4.34....

Expansion around the attrator

U(t, r) ≈ S(r) + A

0

e

s

0

t

v

0

(r) + C

sin(t + δ)

t

3/2
v(λ = 0, r).

Numeri suggests damping of the type ∼ t

−1/2
.
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NLKG n = 3, p = 3

-5.2

-5

-4.8

-4.6

-4.4

-4.2

-4

-3.8

-3.6

 4  6  8  10  12  14  16  18  20  22

U
(t

,r
=

0)

t

dispersion
blowup

fit



A few strit results...

...what mathematians an say about this.

(some results of J. Krieger, K. Nakanishi, W. Shlag, O. Costin, D.

Tataru, R. Donninger, P. Raphael,...)



Singularity formation for (some) nonlinear equations [2℄

P

d

2

u

dt

2

= −A(t)u + F (u), t ∈ [0,T ), u(0) = u

0

, u

t

(0) = v

0

u(t) mapping form some region to Hilbert spae;

A(t) - symmetri, non-negative operator for t ≥ 0 (e.g.

Laplae operator);

P - symmetri, positive operator (e.g. identity);

F - nonlinear term (e.g. polynomial);



Singularity formation for (some) nonlinear equations [2℄

Let F has �potential funtional� given by

V (x) =

∫

1

0

(F (tx), x)dt,

and let exists α > 0, that

(x ,F (x)) ≥ 2(2α+ 1)V (x),

then, if

V (u
0

) >
1

2

[(u
0

,A(0)u
0

) + (v
0

,Pv
0

)] =: E
lin

(0),

then u exists only for �nite times T < ∞:

lim

t→T

−(u,Pu) = +∞.

When V (u
0

) < E

lin

(0) ould have exists for arbitrary times...



Singularity formation for (some) nonlinear equations [2℄

Let F has �potential funtional� given by

V (x) =

∫

1

0

(F (tx), x)dt,

and let exists α > 0, that

(x ,F (x)) ≥ 2(2α+ 1)V (x),

then, if

V (u
0

) >
1

2

[(u
0

,A(0)u
0

) + (v
0

,Pv
0

)] =: E
lin

(0),

then u exists only for �nite times T < ∞:

lim

t→T

−(u,Pu) = +∞.

When V (u
0

) < E

lin

(0) ould have exists for arbitrary times...



Types of behaviour for ritial p = 5

For radial solution u in ritial ase there is possible to develop into:

Type I blowup: T+(u) < ∞ and

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

= ∞

Type II blowup: T+(u) < ∞ and there exist the funtions

(v
0

, ∂
t

v

1

) ∈ Ḣ

1 × L

2

, the number J ∈ N\{0}, that for
j ∈ {1, . . . , J}, and for signs of i

j

∈ {±} and for the positive

funtions λ
j

(t) de�ned for t lose to T+ we have

λ
1

(t) ≪ . . . ≪ λ
J

(t) ≪ T+ − t dla t → T+,

lim

t→T+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(u(t), ∂
t

u(t)) −





v

0

+
J

∑

j=1

i

j

λ
j

(t)1/2
Q

(

x

λ
j

(t)

)

, v
1





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ḣ

1×L

2
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Types of behaviour for ritial p = 5

Global solution: T+(u) = ∞ and there exist the solution v

L

of the linear equation, the number J ∈ N, that for

j ∈ {1, . . . , J}, and for the sign of i

j

∈ {±} and positive

funtions λ
j

(t) de�ned for large t we have

λ
1

(t) ≪ . . . ≪ λ
J

(t) ≪ t dla t → ∞,

lim

t→+∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(u(t), ∂
t

u(t)) −





v

L

(t) +
J

∑

j=1

i

j

λ
j

(t)1/2
Q

(

x

λ
j

(t)

)

, ∂
t

v

L

(t)





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ḣ

1×L

2

= 0,

***

f (t) ≪ g(t) for t → L when lim

t→L

f (t)
g(t) = 0.



�Energy� for ritial ase p = 5

If E (u) < 0 then solution blows up in �nite time

lim

t→T+(||u(x , t)||H1
+ ||∂

t

u(x , t)||
L

2
) = ∞;

If E (u
0

, v
0

) < E (Q, 0) then:

for || ▽ u

0

|| < || ▽Q|| - the solutions exists for all times;

for || ▽ u

0

|| > || ▽Q|| - the solutions blows up.;

If E (u
0

, v
0

) = E (Q, 0) (energy threshold) then for data

|| ▽ u

0

||+ ||v
0

|| ≤ || ▽ Q|| we have global existene; the only

solutions with this lass that do not disperse are ±Q.



�Energy� for ritial ase p = 5

Blowup in �nite time (type I + II):

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

∈ (|| ▽ Q||,∞]

Global existene:

lim

t→T+||(u(t), ∂tu(t))||
Ḣ

1×L

2

= A,

suh that

2E (u
0

, u
1

) ≤ A ≤ 3E (u
0

, u
1

).

(u
0

, u
1

) - initial data with Ḣ

1 × L

2

.



Subritial NLKG n = 3, p = 3

Let S be a radial solution of stati equation

−△S + S = S

3.

The energy of this solution ful�lls

E (S) =: J(S) > 0.

Solutions below the energy of stati solution E (u) < E (S)
depending on the value of

K

0

(u) := ∂λJ(λu)|λ=1

develop into

K

0

(u(0)) ≤ 0 - global solutions for all times;

K

0

(u(0)) > 0 - blowup in �nite time ±T ;

There also exist �one pass theorems� that say that the solution an

reah the neighborhood of ±S only one during the evolution !
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